《神经网络与深度学习》课程笔记(2)– 神经网络基础之逻辑回归

首页 » 算法 » 正文

引言

本节课,我们将开始介绍神经网络的基础:逻辑回归(Logistic Regression)。通过对逻辑回归模型结构的分析,为我们后面学习神经网络模型打下基础。

一、二分类问题

我们知道逻辑回归模型一般用来解决二分类(Binary Classification)问题。二分类就是输出y只有{0,1}两个离散值(也有{-1,1}的情况)。我们以一个图像识别问题为例,判断图片中是否有猫存在,0代表noncat,1代表cat。主要是通过这个例子简要介绍神经网络模型中一些标准化的、有效率的处理方法和notations(记号)。
《神经网络与深度学习》课程笔记(2)-- 神经网络基础之逻辑回归
《神经网络与深度学习》课程笔记(2)-- 神经网络基础之逻辑回归
如上图所示,这是一个典型的二分类问题。一般来说,彩色图片包含RGB三个通道。例如该cat图片的尺寸为(64,64,3)。在神经网络模型中,我们首先要将图片输入x(维度是(64,64,3))转化为一维的特征向量(feature vector)。方法是每个通道一行一行取,再连接起来。由于64x64x3=12288,则转化后的输入特征向量维度为(12288,1)。此特征向量x是列向量,维度一般记为nx。

如果训练样本共有m张图片,那么整个训练样本X组成了矩阵,维度是(nx,m)。注意,这里矩阵X的行nx代表了每个样本x(i)特征个数,列m代表了样本个数。这里,Andrew解释了X的维度之所以是(nx,m)而不是(m,nx)的原因是为了之后矩阵运算的方便。算是Andrew给我们的一个小小的经验吧。而所有训练样本的输出Y也组成了一维的行向量,写成矩阵的形式后,它的维度就是(1,m)。

二、逻辑回归

《神经网络与深度学习》课程笔记(2)-- 神经网络基础之逻辑回归

未经允许不得转载:作者:1147-柳同学, 转载或复制请以 超链接形式 并注明出处 拜师资源博客
原文地址:《《神经网络与深度学习》课程笔记(2)– 神经网络基础之逻辑回归》 发布于2021-02-22

分享到:
赞(0) 打赏

评论 抢沙发

评论前必须登录!

  注册



长按图片转发给朋友

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

Vieu3.3主题
专业打造轻量级个人企业风格博客主题!专注于前端开发,全站响应式布局自适应模板。

登录

忘记密码 ?

您也可以使用第三方帐号快捷登录

Q Q 登 录
微 博 登 录