【Spark】通过SparkStreaming实现从socket接受数据,并进行简单的单词计数

601-赵同学

发表文章数:191

首页 » 大数据 » 正文


步骤

一、创建maven工程并导入jar包

<properties>
    <scala.version>2.11.8</scala.version>
    <spark.version>2.2.0</spark.version>
</properties>
<dependencies>
    <dependency>
        <groupId>org.scala-lang</groupId>
        <artifactId>scala-library</artifactId>
        <version>${scala.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.11</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.11</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming_2.11</artifactId>
        <version>2.2.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>2.7.5</version>
    </dependency>

    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-hive_2.11</artifactId>
        <version>2.2.0</version>
    </dependency>

    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>5.1.38</version>
    </dependency>

</dependencies>
<build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <testSourceDirectory>src/test/scala</testSourceDirectory>
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>3.0</version>
            <configuration>
                <source>1.8</source>
                <target>1.8</target>
                <encoding>UTF-8</encoding>
                <!--    <verbal>true</verbal>-->
            </configuration>
        </plugin>
        <plugin>
            <groupId>net.alchim31.maven</groupId>
            <artifactId>scala-maven-plugin</artifactId>
            <version>3.2.0</version>
            <executions>
                <execution>
                    <goals>
                        <goal>compile</goal>
                        <goal>testCompile</goal>
                    </goals>
                    <configuration>
                        <args>
                            <arg>-dependencyfile</arg>
                            <arg>${project.build.directory}/.scala_dependencies</arg>
                        </args>
                    </configuration>
                </execution>
            </executions>
        </plugin>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-shade-plugin</artifactId>
            <version>3.1.1</version>
            <executions>
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>shade</goal>
                    </goals>
                    <configuration>
                        <filters>
                            <filter>
                                <artifact>*:*</artifact>
                                <excludes>
                                    <exclude>META-INF/*.SF</exclude>
                                    <exclude>META-INF/*.DSA</exclude>
                                    <exclude>META-INF/*.RSA</exclude>
                                </excludes>
                            </filter>
                        </filters>
                        <transformers>
                            <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                <mainClass></mainClass>
                            </transformer>
                        </transformers>
                    </configuration>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

二、安装并启动生产者

在node01安装nc工具

yum -y install nc

使用nc工具向指定端口发送数据

nc -lk 9999

三、开发SparkStreaming代码

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object WordCountTest {
  def main(args: Array[String]): Unit = {
    //获取SparkConf
    val sparkConf: SparkConf = new SparkConf().setAppName("Streaming_WordCountTest").setMaster("local[4]").set("spark.driver.host", "localhost")
    //获取SparkContext
    val sparkContext: SparkContext = new SparkContext(sparkConf)
    //设置日志级别
    sparkContext.setLogLevel("WARN")

    //获取StreamingContext  需要两个参数 SparkContext和duration,后者就是间隔时间
    val streamContext: StreamingContext = new StreamingContext(sparkContext, Seconds(5))

    //从socket获取数据
    val stream: ReceiverInputDStream[String] = streamContext.socketTextStream("node01", 9999)

    //对数据进行计数操作
    val result: DStream[(String, Int)] = stream.flatMap(x => x.split(" ")).map((_, 1)).reduceByKey(_ + _)
    //输出数据
    result.print()

    //启动程序
    streamContext.start()
    streamContext.awaitTermination()
  }

}

四、查看结果

nc工具发送的数据
【Spark】通过SparkStreaming实现从socket接受数据,并进行简单的单词计数

控制台结果

-----------------------------------------
Time: 1586852050000 ms
-------------------------------------------
(hive,1)
(wro,1)
(hadoop,2)
(hello,4)
(java,1)
(ja,1)
(world,1)

-------------------------------------------
Time: 1586852055000 ms
-------------------------------------------

-------------------------------------------
Time: 1586852060000 ms
-------------------------------------------

20/04/14 16:14:23 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 16:14:23 WARN BlockManager: Block input-0-1586852063400 replicated to only 0 peer(s) instead of 1 peers
20/04/14 16:14:24 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 16:14:24 WARN BlockManager: Block input-0-1586852064000 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586852065000 ms
-------------------------------------------
(,2)

20/04/14 16:14:29 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 16:14:29 WARN BlockManager: Block input-0-1586852069600 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586852070000 ms
-------------------------------------------
(456,1)
(123,1)

20/04/14 16:14:31 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 16:14:31 WARN BlockManager: Block input-0-1586852071200 replicated to only 0 peer(s) instead of 1 peers
20/04/14 16:14:34 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 16:14:34 WARN BlockManager: Block input-0-1586852073800 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586852075000 ms
-------------------------------------------
(zhao,1)
(456,1)
(123,1)

20/04/14 16:14:36 WARN RandomBlockReplicationPolicy: Expecting 1 replicas with only 0 peer/s.
20/04/14 16:14:36 WARN BlockManager: Block input-0-1586852076200 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1586852080000 ms
-------------------------------------------
(zhao,2)

-------------------------------------------
Time: 1586852085000 ms
-------------------------------------------

-------------------------------------------
Time: 1586852090000 ms
-------------------------------------------

未经允许不得转载:作者:601-赵同学, 转载或复制请以 超链接形式 并注明出处 拜师资源博客
原文地址:《【Spark】通过SparkStreaming实现从socket接受数据,并进行简单的单词计数》 发布于2020-04-14

分享到:
赞(0) 打赏

评论 抢沙发

评论前必须登录!

  注册



长按图片转发给朋友

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

Vieu3.3主题
专业打造轻量级个人企业风格博客主题!专注于前端开发,全站响应式布局自适应模板。

登录

忘记密码 ?

您也可以使用第三方帐号快捷登录

Q Q 登 录
微 博 登 录