卷积神经网络简介
隐藏神经元与输入的连接可以看作一种观察方式。图一中全连接层,第一个隐藏神经元与所有输入相连,相当于一次观察整幅图像;而图二卷积神经网络,一次观察一个小区域。卷积神经网络相对于全连接网络最大的特点就是参数量的大幅减少。
对比CV中的卷积核(经验得出):
CNN中,w学习得到,可以采用多个卷积核提取特征,增加网络的抽象能力。
卷积神经网络中,一般随着层数增加,w、h下降,channel增加;前面卷积层提取底层特征(颜色、边缘),而后面的层提取的是高层特征(轮子、窗户等)。
(不常用)
卷积神经网络中的梯度下降
池化与采样
pooling
upsample
ReLU
一般,灰度值,白255,黑0。
CIFAR100实战
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.random.set_seed(2345)
# conv_layers: 5 units of conv + maxpooling
conv_layers = [
# unit 1
layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 2
layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 3
layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 4
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 5
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')
]
fc_layers = [
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(100, activation=None)
]
def preprocessing(x, y):
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y
def main():
# 加载数据
(x, y), (x_test, y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y)
y_test = tf.squeeze(y_test)
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.shuffle(1000).map(preprocessing).batch(64)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.map(preprocessing).batch(64)
# 构建网络
# conv_net = Sequential(conv_layers)
# x = tf.random.normal([4, 32, 32, 3])
# out = conv_net(x)
# print(out.shape) ------------(4, 1, 1, 512)
conv_net = Sequential(conv_layers)
fc_net = Sequential(fc_layers)
conv_net.build(input_shape=(None, 32, 32, 3))
fc_net.build(input_shape=(None, 512))
optimizer = optimizers.Adam(lr=1e-4)
varibles = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(5):
for step, (x, y) in enumerate(train_db):
# print(step)
y_onehot = tf.one_hot(y, depth=100)
with tf.GradientTape() as tape:
out = conv_net(x) # out: [batch, 1, 1, 512]
out = tf.reshape(out, [-1, 512])
out = fc_net(out) # out: [out, 100]
loss = tf.losses.categorical_crossentropy(y_onehot, out, from_logits=True)
# print(loss.shape) # (64,)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss, varibles)
optimizer.apply_gradients(zip(grads, varibles))
if step%100 == 0:
print(epoch, step, 'loss:', float(loss))
# 每个epoch做一个测试
total_num = 0
correct_num = 0
for x, y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
prob = tf.nn.softmax(logits, axis=1) # 遍历每个列,即为行
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
correct_num += int(correct)
acc = correct_num / total_num
print(epoch, "test_acc:", acc)
if __name__ == '__main__':
main()
Batch Normalization
若神经元的输入在sigmoid函数两端,则导数比较小,易发生梯度弥散。
x1范围与x2相差较大,w1变化使得loss的变化小;w2变化使得loss的变化大。而若w1和w2对loss的影响一样,则不管从哪个方向出发,都能得到较好的结果。
经典卷积神经网络
当网络层数达到一定程度,堆叠的层数越多,loss/误差越大;即不能简单堆叠更多层,否则training起来很难。(解决办法—ResNet)
拜师教育学员文章:作者:1191-杨同学,
转载或复制请以 超链接形式 并注明出处 拜师资源博客。
原文地址:《tensorflow2.0—笔记5 卷积神经网络》 发布于2020-09-06
评论 抢沙发