Python数据结构与算法 DAY 6

2221-李同学

发表文章数:27

热门标签

, , ,
首页 » Python » 正文

希尔排序

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

希尔排序过程

希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。

例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):

13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10

然后我们对每列进行排序:

10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45

将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:

10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45

排序之后变为:

10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94

最后以1步长进行排序(此时就是简单的插入排序了)。

希尔排序的分析

Python数据结构与算法 DAY 6

实现:

def shell_sort(alist):
    """希尔排序"""
    n = len(alist)
    gap =n // 2
    while gap > 0:
        #希尔排序与普通gap算法的区别就是gap步长
        for i in range(gap, n): # 一直到列表末尾
            j = i
            # 插入排序
            while j>=gap and alist[j-gap] > alist[j]:
                alist[j-gap], alist[j] = alist[j], alist[j-gap]
                j -= gap
        # 得到新的步长
        gap = gap // 2

时间复杂度

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O(n^2)
  • 稳定想:不稳定

希尔排序演示

Python数据结构与算法 DAY 6

快速排序

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤为:

  1. 从数列中挑出一个元素,称为"基准"(pivot),
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

快速排序的分析

Python数据结构与算法 DAY 6

实现:

def quick_sort(alist, start, end):
    """快速排序"""

    # 递归的退出条件
    if start >= end:
        return

    # 设定起始元素为要寻找位置的基准元素
    mid = alist[start]

    # low为序列左边的由左向右移动的游标
    low = start

    # high为序列右边的由右向左移动的游标
    high = end

    while low < high:
        # 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动
        while low < high and alist[high] >= mid:
            high -= 1
        # 将high指向的元素放到low的位置上
        alist[low] = alist[high]

        # 如果low与high未重合,low指向的元素比基准元素小,则low向右移动
        while low < high and alist[low] < mid:
            low += 1
        # 将low指向的元素放到high的位置上
        alist[high] = alist[low]

    # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置
    # 将基准元素放到该位置
    alist[low] = mid

    # 对基准元素左边的子序列进行快速排序
    quick_sort(alist, start, low-1)

    # 对基准元素右边的子序列进行快速排序
    quick_sort(alist, low+1, end)

时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(n^2)
  • 稳定性:不稳定

从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。

快速排序演示

Python数据结构与算法 DAY 6

归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。

归并排序的分析

Python数据结构与算法 DAY 6

实现:

def merge_sort(alist):
    """归并排序"""
    n = len(alist)
    if n <= 1:
        return alist
    mid = n // 2

    # left 采用归并排序后形成的有序的新的列表
    left = merge_sort(alist[:mid])

    # right 采用归并排序后形成的有序的新的列表
    right = merge_sort(alist[mid:])

    # 将两个有序的子序列合并成一个有序的整体
    left_pointer,right_pointer = 0, 0
    result = []
    while left_pointer<len(left) and right_pointer<len(right):
        if left[left_pointer] <= right[right_pointer]:
            result.append(left[left_pointer])
            left_pointer += 1
        else:
            result.append(right[right_pointer])
            right_pointer += 1

    result += left[left_pointer:]
    result += right[right_pointer:]
    return result

时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(nlogn)
  • 稳定性:稳定

常见排序算法效率比较

Python数据结构与算法 DAY 6

搜索

搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找

二分法查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

二分法查找实现

(非递归实现)

(递归实现)

时间复杂度

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(logn)

未经允许不得转载:作者:2221-李同学, 转载或复制请以 超链接形式 并注明出处 拜师资源博客
原文地址:《Python数据结构与算法 DAY 6》 发布于2021-10-13

分享到:
赞(0) 打赏

评论 抢沙发

评论前必须登录!

  注册



长按图片转发给朋友

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

Vieu3.3主题
专业打造轻量级个人企业风格博客主题!专注于前端开发,全站响应式布局自适应模板。

登录

忘记密码 ?

您也可以使用第三方帐号快捷登录

Q Q 登 录
微 博 登 录