MapReduce参数优化

1643-劳同学

发表文章数:34

热门标签

, ,
首页 » 大数据 » 正文

MapReduce重要配置参数

1、资源相关参数

以下调整参数都在mapred-site.xml这个配置文件当中有
//以下参数是在用户自己的mr应用程序中配置就可以生效
(1) mapreduce.map.memory.mb: 一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。
(2) mapreduce.reduce.memory.mb: 一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。
(3) mapred.child.java.opts  配置每个map或者reduce使用的内存的大小,默认是200M
(4) mapreduce.map.cpu.vcores: 每个Map task可使用的最多cpu core数目, 默认值: 1
(5) mapreduce.reduce.cpu.vcores: 每个Reduce task可使用的最多cpu core数目, 默认值: 1
virtual 虚拟的

//shuffle性能优化的关键参数,应在yarn启动之前就配置好
(6)mapreduce.task.io.sort.mb   100         //shuffle的环形缓冲区大小,默认100m
(7)mapreduce.map.sort.spill.percent   0.8    //环形缓冲区溢出的阈值,默认80%

//应该在yarn启动之前就配置在服务器的配置文件中才能生效
以下配置都在yarn-site.xml配置文件当中配置
(8) yarn.scheduler.minimum-allocation-mb      1024   给应用程序container分配的最小内存
(9) yarn.scheduler.maximum-allocation-mb      8192    给应用程序container分配的最大内存
(10)yarn.scheduler.minimum-allocation-vcores    1    container最小的虚拟内核的个数
(11)yarn.scheduler.maximum-allocation-vcores    32 container最大的虚拟内核的个数
(12)yarn.nodemanager.resource.memory-mb   8192  每个nodemanager给多少内存
 

2、容错相关参数

(1) mapreduce.map.maxattempts: 每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。
(2) mapreduce.reduce.maxattempts: 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。
(3) mapreduce.job.maxtaskfailures.per.tracker: 当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业仍认为成功。
(4) mapreduce.task.timeout: Task超时时间,默认值为600000毫秒,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒)。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。
 

3、本地运行MapReduce作业

设置以下几个参数: file:///
mapreduce.framework.name=local
mapreduce.jobtracker.address=local
fs.defaultFS=local
 

4、效率和稳定性相关参数

(1) mapreduce.map.speculative: 是否为Map Task打开推测执行机制,默认为true,如果为true,如果Map执行时间比较长,那么集群就会推测这个Map已经卡住了,会重新启动同样的Map进行并行的执行,哪个先执行完了,就采取哪个的结果来作为最终结果,一般直接关闭推测执行
(2) mapreduce.reduce.speculative: 是否为Reduce Task打开推测执行机制,默认为true,如果reduce执行时间比较长,那么集群就会推测这个reduce已经卡住了,会重新启动同样的reduce进行并行的执行,哪个先执行完了,就采取哪个的结果来作为最终结果,一般直接关闭推测执行
(3) mapreduce.input.fileinputformat.split.minsize: FileInputFormat做切片时的最小切片大小,默认为0

未经允许不得转载:作者:1643-劳同学, 转载或复制请以 超链接形式 并注明出处 拜师资源博客
原文地址:《MapReduce参数优化》 发布于2021-09-22

分享到:
赞(0) 打赏

评论 抢沙发

评论前必须登录!

  注册



长按图片转发给朋友

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

Vieu3.3主题
专业打造轻量级个人企业风格博客主题!专注于前端开发,全站响应式布局自适应模板。

登录

忘记密码 ?

您也可以使用第三方帐号快捷登录

Q Q 登 录
微 博 登 录