Numpy&pandas(八)–股票分析实例

587-王同学

发表文章数:79

热门标签

首页 » 数据科学库 » 正文

股票数据分析

具体详见 https://github.com/kamidox/stock-analysis

分析波动幅度

%matplotlib inline
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
datadir = 'yahoo-data'
fname = '002001.csv'
data = pd.read_csv(os.path.join(datadir, fname), index_col='Date', parse_dates=True)
#读取文件,将date列作为行索引,并解析为datetime类型


## 使用 resample 针对复权收盘价进行重采样
adj_price = data['Adj Close']
resampled = adj_price.resample('m', how='ohlc')

#求一个比例
(resampled.high - resampled.low) / resampled.low

增长曲线

# 600690.ss 000951.sz 002001.sz
stockid = '600690.sz'
stockfile = '600690.csv'
ds = pd.read_csv(os.path.join('yahoo-data', stockfile), index_col='Date', parse_dates=True)
ds.head()
adj_price = ds['Adj Close']
adj_price.plot(figsize=(8, 6))
#绘制折线图

增长倍数

最大增长倍数及最大年化复合增长率

计算最低价和最高价之间的收盘价比较,以及增长的倍数和年化复全增长率,这个反应的是一个股票最好的情况下的投资收益情况。

# 最高增长倍数
total_max_growth = adj_price.max() / adj_price.min()
total_max_growth

# 最大年均复合增长率
min_date = adj_price.argmin()
max_date = adj_price.argmax()
max_growth_per_year = total_max_growth ** (1.0 / (max_date.year - min_date.year))
max_growth_per_year

当前增长倍数及复合增长率

计算上市时的收盘价与当前的收盘价比较,增长的倍数和年化复全增长率。

# 当前平均增长倍数
total_growth = adj_price.ix[0] / adj_price.ix[-1]
total_growth

# 年复合增长倍数
old_date = adj_price.index[-1]
now_date = adj_price.index[0]
growth_per_year = total_growth ** (1.0 / (now_date.year - old_date.year))
growth_per_year

平均年化增长率

计算每年的增长率,然后再求平均值。也可以计算每月的增长率,再求平均值,可以看到更短的一些周期变化。

price_in_years = adj_price.to_period(freq='A').groupby(level=0).first()
price_in_years
price_in_years.plot(figsize=(8,6))

# 这里的关键信息:
# 计算年化收益率时,diff 应该要除以前一年的价格,即在前一年的价格的基础上上涨了多少,而不是在当前年的价格。
diff = price_in_years.diff()
rate_in_years =  diff / (price_in_years - diff)
rate_in_years

rate_in_years.mean()
rate_in_years.plot(kind='bar', figsize=(8,6))
X = [0, len(rate_in_years)]
Y = [0, 0]
plt.plot(X, Y, color='red', linestyle='-')

 

标签:

拜师教育学员文章:作者:587-王同学, 转载或复制请以 超链接形式 并注明出处 拜师资源博客
原文地址:《Numpy&pandas(八)–股票分析实例》 发布于2020-02-28

分享到:
赞(0) 打赏

评论 抢沙发

评论前必须登录!

  注册



长按图片转发给朋友

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

Vieu3.3主题
专业打造轻量级个人企业风格博客主题!专注于前端开发,全站响应式布局自适应模板。

登录

忘记密码 ?

您也可以使用第三方帐号快捷登录

Q Q 登 录
微 博 登 录