Python-数据结构与算法

1899-吴同学

发表文章数:33

热门标签

, ,
首页 » 算法 » 正文

1、“大O记法”:对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。 时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n)

2、时间复杂度的几条基本计算规则

(1)基本操作,即只有常数项,认为其时间复杂度为O(1)

(2)顺序结构,时间复杂度按加法进行计算

(3)循环结构,时间复杂度按乘法进行计算

(4)分支结构,时间复杂度取最大值

(5)判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略

(6)在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度

所消耗的时间从小到大:

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)

3、timeit模块可以用来测试一小段Python代码的执行速度。

class timeit.Timer(stmt='pass', setup='pass', timer=)

Timer是测量小段代码执行速度的类。

timeit.Timer.timeit(number=1000000)

Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的平均耗时,一个float类型的秒数。

4、数据表的结构

一个顺序表的完整信息包括两部分,一部分是表中的元素集合,另一部分是为实现正确操作而需记录的信息,即有关表的整体情况的信息,这部分信息主要包括元素存储区的容量和当前表中已有的元素个数两项。

5、顺序表的两种基本实现方式

一体式结构,存储表信息的单元与元素存储区以连续的方式安排在一块存储区里,两部分数据的整体形成一个完整的顺序表对象。

分离式结构,表对象里只保存与整个表有关的信息(即容量和元素个数),实际数据元素存放在另一个独立的元素存储区里,通过链接与基本表对象关联。

在Python的官方实现中,list就是一种采用分离式技术实现的动态顺序表。在Python的官方实现中,list实现采用了如下的策略:在建立空表(或者很小的表)时,系统分配一块能容纳8个元素的存储区;在执行插入操作(insert或append)时,如果元素存储区满就换一块4倍大的存储区。但如果此时的表已经很大(目前的阀值为50000),则改变策略,采用加一倍的方法。引入这种改变策略的方式,是为了避免出现过多空闲的存储位置。

6、如果a= 10,a里边存储的是地址,地址指向10;如果int a = 10,就是指定a是int类型,里边存储10。

Python-数据结构与算法

7、链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是不像顺序表一样连续存储数据,而是在每一个节点(数据存储单元)里存放下一个节点的位置信息(即地址)。

单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域。这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值。

 单链表的一个变形是单向循环链表。

一种更复杂的链表是“双向链表”或“双面链表”。每个节点有两个链接:一个指向前一个节点,而另一个指向下一个节点。

8、栈(stack),有些地方称为堆栈,是一种容器,按照后进先出(LIFO, Last In First Out)的原理运作。

9、队列(queue)是只允许在一端进行插入操作,而在另一端进行删除操作的线性表。队列是一种先进先出的(First In First Out)的线性表,简称FIFO。

双端队列中的元素可以从两端弹出,其限定插入和删除操作在表的两端进行。双端队列可以在队列任意一端入队和出队。就好比有两个栈,栈底连在一起。

10、排序算法的稳定性

原数组  (4, 1)  (3, 1)  (3, 7)(5, 6)

排序后
(3, 1)  (3, 7)  (4, 1)  (5, 6)  (维持次序)   #如果排序后(3, 1)  (3, 7)的顺序与原数组的顺序一致,我们就说它是稳定的。
(3, 7)  (3, 1)  (4, 1)  (5, 6)  (次序被改变)

 11、冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。

  • 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

12、选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

  • 最优时间复杂度:O(n2)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定(考虑升序每次选择最大的情况)

13、插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

  • 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

14、 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O(n2)
  • 稳定想:不稳定

15、快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤为:

  1. 从数列中挑出一个元素,称为"基准"(pivot),
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定

16、归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(nlogn)
  • 稳定性:稳定

17、常见排序算法效率比较

Python-数据结构与算法

 18、二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表(有序的顺序表),且插入删除困难。

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(logn)

19、树的种类:有序树和无序树。

有序树中的二叉树又分完全二叉树、平衡二叉树、排序二叉树。

二叉树的性质:

性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2: 深度为k的二叉树至多有2^k – 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)

20、二叉树的遍历包括深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

21、先序、中序、后序遍历

Python-数据结构与算法

拜师教育学员文章:作者:1899-吴同学, 转载或复制请以 超链接形式 并注明出处 拜师资源博客
原文地址:《Python-数据结构与算法》 发布于2022-05-22

分享到:
赞(0) 打赏

评论 抢沙发

评论前必须登录!

  注册



长按图片转发给朋友

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

Vieu3.3主题
专业打造轻量级个人企业风格博客主题!专注于前端开发,全站响应式布局自适应模板。

登录

忘记密码 ?

您也可以使用第三方帐号快捷登录

Q Q 登 录
微 博 登 录